[1] 刘瑞雪,周腾,樊晓敏,等.明胶基复合水凝胶研究进展[J].轻工学报,2018,33(06):42-54+81. [2] Forooshani P K, Lee B P.Recent approaches in designing bioadhesive materials inspired by mussel adhesive protein[J]. Journal of Polymer Science Part A-Polymer Chemistry, 2017, 55(1): 9-33. [3] Guo Z W, Ni K F, Wei D Z, et al.Fe3+-induced oxidation and coordination cross-linking in catechol-chitosan hydrogels under acidic pH conditions[J]. RSC Advances, 2015, 5(47): 37377-37384. [4] Li S B, Wang L, Yu X M, et al.Synthesis and characterization of a novel double cross-linked hydrogel based on Diels-Alder click reaction and coordination bonding[J]. Materials Science & Engineering C-Materials for Biological Applications, 2018, 82:299-309. [5] Yavvari P S, Srivastava A.Robust, self-healing hydrogels synthesised from catechol rich polymers[J]. Journal of Materials Chemistry B, 2015, 3(5): 899-910. [6] Yavvari P S, Pal S, Kumar S, et al.Injectable, Self-Healing Chimeric Catechol-Fe(III) Hydrogel for Localized Combination Cancer Therapy[J]. ACS Biomaterials Science & Engineering, 2017, 3(12): 3404-3413. [7] Chen N, Qin L M, Pan Q M.Mussel-inspired healing of a strong and stiff polymer[J]. Journal of Materials Chemistry A, 2018, 6(15): 6667-6674. [8] Chen N, Pan Q M.Mussel-Inspired Self-Healing of Ultralight Magnetic Frameworks[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(9): 7905-7911. [9] Azevedo S, Costa A M S, Andersen A, et al. Bioinspired Ultratough Hydrogel with Fast Recovery, Self-Healing, Injectability and Cytocompatibility[J]. Advanced Materials, 2017, 29(28): 1700759. [10] 王莉,汪刘建,吉亚丽.儿茶酚基团改性壳聚糖组织胶黏剂的制备和表征[J].功能高分子学报,2017,30(1):59-66. [11] Zeng Z W, Mo X M.Rapid in situ cross-linking of hydrogel adhesives based on thiol-grafted bio-inspired catechol-conjugated chitosan[J]. Journal of Biomaterials Applications, 2017, 32(5): 612-621. [12] Ghadban A, Ahmed A S, Ping Y, et al.Bioinspired pH and magnetic responsive catechol-functionalized chitosan hydrogels with tunable elastic properties[J]. Chemical Communications, 2016, 52(4): 697-700. [13] Ryu J H, Lee Y, Kong W H, et al.Catechol-Functionalized Chitosan/Pluronic Hydrogels for Tissue Adhesives and Hemostatic Materials[J]. Biomacromolecules, 2011, 12(7):2653-2659. [14] Kim K, Ryu J H, Lee D Y, et al.Bio-inspired catechol conjugation converts water-insoluble chitosan into a highly water-soluble, adhesive chitosan derivative for hydrogels and LbL assembly[J]. Biomaterials Science 2013, 1(7): 783-790. [15] Zhang J M, Tao X Y, Liu J W, et al.Fe3+-induced bioinspired chitosan hydrogels for the sustained and controlled release of doxorubicin[J]. RSC Advances, 2016, 6(53): 47940-47947. [16] Shin J, Lee J S, Lee C, et al.Tissue Adhesive Catechol-Modified Hyaluronic Acid Hydrogel for Effective, Minimally Invasive Cell Therapy[J]. Advanced Functional Materials, 2015, 25(25): 3814-3824. [17] Xu X, Jha A K, Harrington D A, et al.Hyaluronic acid-based hydrogels: from a natural polysaccharide to complex networks[J]. Soft Matter 2012, 8(12): 3280-3294. [18] Lee Y, Chung H J, Yeo S, et al.Thermo-sensitive, injectable, and tissue adhesive sol-gel transition hyaluronic acid/pluronic composite hydrogels prepared from bio-inspired catechol-thiol reaction[J]. Soft Matter 2010, 6(5): 977-983. [19] Hong S, Yang K, Kang B, et al.Hyaluronic Acid Catechol: A Biopolymer Exhibiting a pH-Dependent Adhesive or Cohesive Property for Human Neural Stem Cell Engineering[J]. Advanced Functional Materials, 2013, 23(14): 1774-1780. [20] Shin J, Lee J S, Lee C, et al.Tissue Adhesive Catechol-Modified Hyaluronic Acid Hydrogel for Effective, Minimally Invasive Cell Therapy[J]. Advanced Functional Materials, 2015, 25(25): 3814-3824. [21] Park H J, Jin Y, Shin J, et al.Catechol-Functionalized Hyaluronic Acid Hydrogels Enhance Angiogenesis and Osteogenesis of Human Adipose-Derived Stem Cells in Critical Tissue Defects[J]. Biomacromolecules, 2016, 17(6): 1939-1948. [22] Zhang Z, Gao Z L, Wang Y T, Eco-Friendly, Self-Healing Hydrogels for Adhesive and Elastic Strain Sensors, Circuit Repairing, and Flexible Electronic Devices, Macromolecules, 2019, 52(6): 2531-2541. [23] Lee J, Chang K, Kim S, et al.Phase Controllable Hyaluronic Acid Hydrogel with Iron(III) IonCatechol Induced Dual Cross-Linking by Utilizing the Gap of Gelation Kinetics[J]. Macromolecules, 2016, 49(19): 7450-7459. [24] Guo Z W, Mi S L, Sun W.A Facile Strategy for Preparing Tough, Self-Healing Double-Network Hyaluronic Acid Hydrogels Inspired by Mussel Cuticles[J]. Macromolecular Materials and Engineering, 2019, 304(4): 1800715. [25] Guo Z W, Mi S L, Sun W.The multifaceted nature of catechol chemistry: bioinspired pH-initiated hyaluronic acid hydrogels with tunable cohesive and adhesive properties[J]. Journal of Materials Chemistry B, 2018, 6(39): 6234-6244. [26] 王清华,钟文菲,何盟.藻酸盐敷料的临床应用:与传统材料特征的比较[J].中国组织工程研究与临床康复,2010,14(03):533-536. [27] Gombotz W R, Wee S F.Protein release from alginate matrices[J]. Advanced Drug Delivery Reviews, 2012, 64: 194-205. [28] Lee C, Shin J, Lee J S, et al.Bioinspired, Calcium-Free Alginate Hydrogels with Tunable Physical and Mechanical Properties and Improved Biocompatibility[J]. Biomacromolecules, 2013, 14(6): 2004-2013. [29] Hou J X, Li C, Guan Y, et al.Enzymatically crosslinked alginate hydrogels with improved adhesion properties[J]. Polymer Chemistry, 2015, 6(12): 2204-2213. [30] Kim S, Moon J M, Choi J S, et al.Mussel-Inspired Approach to Constructing Robust Multilayered Alginate Films for Antibacterial Applications[J]. Advanced Functional Materials, 2016, 26(23): 4099-4105. [31] Hong S H, Shin M, Lee J, et al.STAPLE: Stable Alginate Gel Prepared by Linkage Exchange from Ionic to Covalent Bonds[J]. Advanced Healthcare Materials, 2016, 5(1): 75-79. [32] Lee Y K, Lee S Y.A colorimetric alginate-catechol hydrogel suitable as a spreadable pH indicator[J]. Dyes and Pigments, 2014, 108: 1-6. [33] Cholewinski A, Yang F K, Zhao B X.Underwater Contact Behavior of Alginate and Catechol-Conjugated Alginate Hydrogel Beads[J]. Langmuir, 2017, 33(34): 8353-8361. [34] Tao F, Qin L M, Wang Z K, et al.Self-Healable and Cold-Resistant Supercapacitor Based on a Multifunctional Hydrogel Electrolyte[J]. ACS Applied Materials & Interfaces, 2017, 9(18): 15541-15548. [35] Alegre-Requena J V, Häring M, Herrera R P, et al. Regulatory parameters of self-healing alginate hydrogel networks prepared via mussel-inspired dynamic chemistry[J]. New Journal of Chemistry, 2016, 40(10): 8493-8501. [36] Zhu W Z, Peck Y, Iqbal J, et al.A novel DOPA-albumin based tissue adhesive for internal medical applications[J]. Biomaterials, 2017, 147: 99-115. [37] Duan L, Yuan Q J, Xiang H Z, et al.Fabrication and characterization of a novel collagen-catechol hydrogel[J]. Journal of Biomaterials Applications, 2018, 32(7): 862-870. [38] Kim B J, Oh D X, Kim S, et al.Mussel-Mimetic Protein-Based Adhesive Hydrogel[J]. Biomacromolecules, 2014, 15(5):1579-1585. [39] Yang B, Lim C, Hwang D, et al.Switch of Surface Adhesion to Cohesion by Dopa-Fe3+ Complexation, in Response to Microenvironment at the Mussel Plaque/Substrate Interface[J]. Journal of Physical Chemistry B, 2016, 120(29):7265-7274. [40] Thi P L, Lee Y, Thi T T H, et al. Catechol-rich gelatin hydrogels in situ hybridizations with silver nanoparticle for enhanced antibacterial activity[J]. Materials Science & Engineering C-Materials for Biological Applications, 2018, 92: 52-60. [41] Cheng H, Yue K, Kazemzadeh-Narbat M, et al.Mussel-Inspired Multifunctional Hydrogel Coating for Prevention of Infections and Enhanced Osteogenesis[J]. ACS Applied Materials & Interfaces, 2017, 9(13): 11428-11439. [42] Hong S, Pirovich D, Kilcoyne A, et al.Supramolecular Metallo-Bioadhesive for Minimally Invasive Use[J]. Advanced Materials, 2016, 28(39): 8675-8680. [43] Kim J Y, Ryu S B, Park K D.Preparation and characterization of dual-crosslinked gelatin hydrogel via Dopa-Fe3+ complexation and fenton reaction[J]. Journal of Industrial and Engineering Chemistry, 2018, 58: 105-112. [44] Zhu W Z, Yang J, Iqbal J, et al.A mussel-inspired double-crosslinked tissue adhesive on rat mastectomy model: seroma prevention and in vivo biocompatibility[J]. Journal of Surgical Research, 2017, 215: 173-182. [45] Fan C J, Fu J Y, Zhu W Z, et al.A mussel-inspired double-crosslinked tissue adhesive intended for internal medical use[J]. Acta Biomaterialia, 2016, 33: 51-63. [46] Choi Y C, Choi J S, Jung Y J, et al.Human gelatin tissue-adhesive hydrogels prepared by enzyme-mediated biosynthesis of DOPA and Fe3+ion crosslinking[J]. Journal of Materials Chemistry B, 2014, 2(2): 201-209. [47] Liu Z, Yao P.Injectable shear-thinning xanthan gum hydrogel reinforced by mussel-inspired secondary crosslinking[J]. RSC Advances, 2015, 5(125): 103292-103301. |