[1] 李涛,何松,林晓莹,等.农林废弃生物质资源精深加工技术进展[J].材料导报,2021,35(19):19001-19014. [2] Xie W, Li T, Tiraferri A, et al.Toward the next generation of sustainable membranes from green chemistry principles[J].ACS Sustainable Chemistry & Engineering, 2020, 9(1): 50-75. [3] Ates B, Koytepe S, Ulu A, et al.Chemistry, structures, and advanced applications of nanocomposites from biorenewable resources[J]. Chemical Reviews, 2020, 120(17): 9304-9362. [4] Mohamed A, El-Sakhawy M, El-Sakhawy M A M. Polysaccharides, protein and lipid -based natural edible films in food packaging: A review[J]. Carbohydrate Polymers, 2020, 238: 116178. [5] Gomri C, Cretin M, Semsarilar M.Recent progress on chemical modification of cellulose nanocrystal (CNC) and its application in nanocomposite films and membranes-A comprehensive review[J]. Carbohydrate Polymers, 2022, 294: 119790. [6] Jafarzadeh S, Nafchi A M, Salehabadi A, et al.Application of bio-nanocomposite films and edible coatings for extending the shelf life of fresh fruits and vegetables[J]. Advances in Colloid and Interface Science, 2021, 291: 102405. [7] Wei X, Liu Y, Zheng J, et al.A critical review on thin-film nanocomposite membranes enabled by nanomaterials incorporated in different positions and with diverse dimensions: Performance comparison and mechanisms[J]. Journal of Membrane Science, 2022, 661: 120952. [8] Krishnan J N, Venkatachalam K R, Ghosh O, et al.Review of thin film nanocomposite membranes and their applications in desalination[J]. Frontiers in Chemistry, 2022, 10: 781372. [9] Misra S, Wang H.Review on the growth, properties and applications of self-assembled oxide-metal vertically aligned nanocomposite thin films-current and future perspectives[J]. Materials Horizons, 2021, 8(3): 869-884. [10] Tu Z, Guday G, Adeli M, et al.Multivalent interactions between 2D nanomaterials and biointerfaces[J]. Advanced Materials, 2018, 30(33): 1706709. [11] Zubair M, Ullah A.Recent advances in protein derived bionanocomposites for food packaging applications[J]. Critical Reviews in Food Science and Nutrition, 2020, 60(3): 406-434. [12] Vatanpour V, Yavuzturk Gul B, Zeytuncu B, et al.Polysaccharides in fabrication of membranes: A review[J]. Carbohydrate Polymers, 2022, 281: 119041. [13] Cencha L G, Allasia M, Ronco L I, et al.Proteins as promising biobased building blocks for preparing functional hybrid protein/synthetic polymer nanoparticles[J]. Industrial & Engineering Chemistry Research, 2021, 60(13): 4745-4765. [14] Yang W, Meyers M A, Ritchie R O.Structural architectures with toughening mechanisms in Nature: A review of the materials science of Type-I collagenous materials[J]. Progress in Materials Science, 2019, 103: 425-483. [15] Lin W, Shi J, Reich G.Fundamental collagen chemistry in leather making [M]. Chengdu: Sichuan University Press, 2021. [16] Pei Y, Jordan K E, Xiang N, et al.Liquid-exfoliated mesostructured collagen from the bovine achilles tendon as building blocks of collagen membranes[J]. ACS Applied Materials & Interfaces, 2021, 13(2): 3186-3198. [17] Tian X, Zhao K, Teng A, et al.A rethinking of collagen as tough biomaterials in meat packaging: Assembly from native to synthetic[J]. Critical Reviews in Food Science and Nutrition, 2022: 1-21. [18] Lei M, Qu X, Wan H, et al. Electro-assembly of a dynamically adaptive molten fibril state for collagen [J]. Science Advances, 2022, 8(5): eabl7506. [19] 张军涛,汪海波,徐丽明.水产胶原的热稳定性能和生物医学应用研究进展[J].皮革科学与工程,2023,33(1):46-53. [20] 田振华,王颖.氧化羧甲基纤维素钠改性胶原膜的制备及表征[J].皮革科学与工程,2020,30(4):7-12. [21] Torculas M, Medina J, Xue W, et al.Protein-based bioelectronics[J]. ACS Biomaterials Science & Engineering, 2016, 2(8): 1211-1223. [22] 胡可欣,李国英.没食子酸对胶原蛋白膜的改性研究[J].皮革科学与工程,2020,30(4):1-6. [23] Shi J, Zhang R, Zhou J, et al.Supramolecular assembly of multifunctional collagen nanocomposite film via polyphenol-coordinated clay nanoplatelets[J]. ACS Applied Bio Materials, 2022, 5(3): 1319-1329. [24] Xu K, Zhou M, Chen W, et al.Bioinspired polydopamine/graphene oxide/collagen nanofilms as a controlled release carrier of bioactive substances[J]. Chemical Engineering Journal, 2021, 405: 126930. [25] Andonegi M, Penalba M, de la Caba K, et al. ZnO nanoparticle-incorporated native collagen films with electro- conductive properties[J]. Materials Science and Engineering C, 2020, 108: 110394. [26] Jiang S, Wei Y, Shi S, et al.Nacre-inspired strong and multifunctional soy protein-based nanocomposite materials for easy heat-dissipative mobile phone shell[J]. Nano Letters, 2021, 21(7): 3254-3261. [27] Wei Y, Jiang S, Li X, et al.“Green” flexible electronics: Biodegradable and mechanically strong soy protein-based nanocomposite films for human motion monitoring[J]. ACS Applied Materials & Interfaces, 2021, 13(31): 37617-37627. [28] Alizadeh-Sani M, Khezerlou , Ehsani A. Fabrication and characterization of the bionanocomposite film based on whey protein biopolymer loaded with TiO2 nanoparticles, cellulose nanofibers and rosemary essential oil[J]. Industrial Crops and Products, 2018, 124: 300-315. [29] Montes-de-Oca-ávalos J M, Altamura D,Herrera M L, et al. Physical and structural properties of whey protein concentrate - corn oil - TiO2 nanocomposite films for edible food-packaging[J]. Food Packaging and Shelf Life, 2020, 26: 100590. [30] Hua W, Mao Y, Zhang J, et al.Renal clearable gold nanoparticle-functionalized silk film for in vivo fluorescent temperature mapping[J]. Frontiers in Chemistry, 2020, 8: 364. [31] Ren G, Wan K, Kong H, et al.Recent advance in biomass membranes: Fabrication, functional regulation, and antimicrobial applications[J]. Carbohydrate Polymers, 2023, 305: 120537. [32] Deng J, Zhu E, Xu G, et al.Overview of renewable polysaccharide-based composites for biodegradable food packaging applications[J]. Green Chemistry, 2022, 24(2): 480-492. [33] Raghuwanshi V, Sand Garnier G.Cellulose nano-films as bio-interfaces[J]. Frontiers in Chemistry, 2019, 7: 535. [34] Ferreira A R V, Alves V D, Coelhoso I M. Polysaccharide-based membranes in food packaging applications[J]. Membranes, 2016, 6(2): 22. [35] Wang P, Yin B, Dong H, et al.Coupling biocompatible Au nanoclusters and cellulose nanofibrils to prepare the antibacterial nanocomposite films[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 986. [36] Xie Y, Hu X, Zhang Y, et al.Development and antibacterial activities of bacterial cellulose/graphene oxide-CuO nanocomposite films[J]. Carbohydrate Polymers, 2020, 229: 115456. [37] Kadumudi F B, Trifol J, Jahanshahi M, et al.Flexible and green electronics manufactured by origami folding of nanosilicate-reinforced cellulose paper[J]. ACS Applied Materials & Interfaces, 2020, 12(42): 48027-48039. [38] Zhu J, Gao W, Wang B, et al.Preparation and evaluation of starch-based extrusion-blown nanocomposite films incorporated with nano-ZnO and nano-SiO2[J]. International Journal of Biological Macromolecules, 2021, 183: 1371-1378. [39] Hu X, Jia X, Zhi C, et al.Improving the properties of starch-based antimicrobial composite films using ZnO-chitosan nanoparticles[J]. Carbohydrate Polymers, 2019, 210: 204-209. [40] Ortega F, Arce V B, Garcia M A.Nanocomposite starch-based films containing silver nanoparticles synthesized with lemon juice as reducing and stabilizing agent[J]. Carbohydrate Polymers, 2021, 252: 117208. [41] Mujtaba M, Morsi R E, Kerch G, et al.Current advancements in chitosan-based film production for food technology: A review[J]. International Journal of Biological Macromolecules, 2019, 121: 889-904. [42] Xie M, Huang K, Yang F, et al.Chitosan nanocomposite films based on halloysite nanotubes modification for potential biomedical applications[J]. International Journal of Biological Macromolecules, 2020, 151: 1116-1125. [43] Roy S, Van Hai L, Kim H C, et al.Preparation and characterization of synthetic melanin-like nanoparticles reinforced chitosan nanocomposite films[J]. Carbohydrate Polymers, 2020, 231: 115729. [44] Roy S, Zhai L D, Kim H C, et al.Tannic-acid- cross- linked and TiO2-nanoparticle-reinforced chitosan- based nanoco-mposite film[J]. Polymers, 2021, 13(2): 228. |