[1] Cai M M, Sugumaran M, Robinson W E.The crosslinking and antimicrobial properties of tunichrome[J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2008, 151(1): 110-117. [2] Pasanphan W, Buettner G R, Chirachanchai S.Chitosan Conjugated with Deoxycholic Acid and Gallic Acid: A Novel Biopolymer-based Additive Antioxidant for Polyethylene[J]. Journal of Applied Polymer Science, 2008, 109(1): 38-46. [3] 陈曦,俞明珠,刘剑,等.绿色化学方法合成儿茶酚-壳聚糖水凝胶的应用[J].厦门大学学报(自然科学版),2016,55(2):178-183. [4] Cheng H A, Drinnan C T, Pleshko N, et al.Pseudotannins self-assembled into antioxidant complexes[J]. Soft Matter, 2015, 11(39): 7783-7791. [5] Yoo E, Cheng H A, Nardacci L E, et al.Activatable interpolymer complex-superparamagnetic iron oxide nanoparticles as magnetic resonance contrast agents sensitive to oxidative stress[J]. Colloids and Surfaces B-Biointerfaces, 2017, 158: 578-588. [6] Shin M, Haeshin Lee H.Gallol-Rich Hyaluronic Acid Hydrogels: Shear-Thinning, Protein Accumulation against Concentration Gradients, and Degradation-Resistant Properties[J]. Chemistry of Materials, 2017, 29(19): 8211-8220. [7] Cho J H, Lee J S, Shin J, et al.Ascidian-Inspired Fast-Forming Hydrogel System for Versatile Biomedical Applications: Pyrogallol Chemistry for Dual Modes of Crosslinking Mechanism[J]. Advanced Functional Materials, 2018, 28(6): 1705244. [8] Zhao Q X, Mu S D, Liu X, et al.Gallol-Tethered Injectable AuNP Hydrogel with Desirable Self-Healing and Catalytic Properties[J]. Macromolecular Chemistry and Physics, 2019, 220(2): 1800427. [9] Veisi H, Pirhayati M, Kakanejadifard A, et al.In Situ Green Synthesis of Pd Nanoparticles on Tannic Acid-Modified Magnetite Nanoparticles as a Green Reductant and Stabilizer Agent: Its Application as a Recyclable Nanocatalyst (Fe3O4@TA/Pd) for Reduction of 4-Nitrophenol and Suzuki Reactions[J]. ChemistrySelect, 2018, 3(6): 1820-1826. [10] Ejima H, Richardson J J, Caruso F.Metal-phenolic networks as a versatile platform to engineer nanomaterials and biointerfaces[J]. Nano Today, 2017, 12: 136-148. [11] Shin M, Ryu J H, Park J P, et al.DNA/Tannic Acid Hybrid Gel Exhibiting Biodegradability, Extensibility, Tissue Adhesiveness, and Hemostatic Ability[J]. Advanced Functional Materials, 2015, 25(8):1270-1278. [12] Peng Z Y, Zhong H.Synthesis and Properties of Tannic Acid-Based Hydrogels[J]. Journal of Macromolecular Science, Part B-Physics, 2014, 53(2): 233-242. [13] Guo S J, Sun W, Kim J P, et al.Development of tannin-inspired antimicrobial bioadhesives[J]. Acta Biomaterialia 2018, 72: 35-44. [14] Sun W X, Jiang H T, Wu X, et al.Strong dual-crosslinked hydrogels for ultrasound-triggered drug delivery[J]. Nano Reserarch, 2019, 12(1): 115-119. [15] Lee H Y, Hwang C H, Kim H E, et al.Enhancement of bio-stability and mechanical properties of hyaluronic acid hydrogels by tannic acid treatment[J]. Carbohydrate Polymers, 2018, 186: 290-298. [16] Yang J, Li M, Wang Y F, et al.Double Cross-Linked Chitosan Composite Films Developed with Oxidized Tannic Acid and Ferric Ions Exhibit High Strength and Excellent Water Resistance[J]. Biomacromolecules, 2019, 20(2): 801-812. [17] Shao C Y, Meng L, Wang M, et al.Mimicking Dynamic Adhesiveness and Strain-Stiffening Behavior of Biological Tissues in Tough and Self-Healable Cellulose Nanocomposite Hydrogels[J]. ACS Applied Materials & Interfaces, 2019, 11(6): 5885-5895. [18] Sanandiya N D, Lee S, Rho S, et al.Tunichrome-inspired pyrogallol functionalized chitosan for tissue adhesion and hemostasis[J]. Carbohydrate Polymers, 2019, 208: 77-85. [19] Oh D X, Kim S, Lee D, et al.Tunicate-mimetic nanofibrous hydrogel adhesive with improved wet adhesion[J]. Acta Biomaterialia, 2015, 20: 104-112. [20] Chen Y N, Peng L F, Liu T Q, et al.Poly(vinyl alcohol)?Tannic Acid Hydrogels with Excellent Mechanical Properties and Shape Memory Behaviors[J]. ACS Applied Materials & Interfaces, 2016, 8(40): 27199-27206. [21] Qiao H Y, Qi P F, Zhang X H, et al.Multiple Weak H-Bonds Lead to Highly Sensitive, Stretchable, Self-Adhesive, and Self-Healing Ionic Sensors[J]. ACS Applied Materials & Interfaces, 2019, 11(8): 7755-7763. [22] Fan H L, Wang J H, Jin Z X. Tough, Swelling-Resistant, Self-Healing, and Adhesive Dual-Cross-Linked Hydrogels Based on Polymer-Tannic Acid Multiple Hydrogen Bonds[J] Macromolecules, 2018, 51(5): 1696-1705. [23] Nam H G, Nam M G, Yoo P J, et al.Hydrogen bonding-based strongly adhesive coacervate hydrogels synthesized using poly(N-vinylpyrrolidone) and tannic acid[J]. Soft Matter, 2019, 15(4): 785-791. [24] Xu R N, Ma S H, Lin P, et al.High Strength Astringent Hydrogels Using Protein as the Building Block for Physically Cross-linked Multi-Network[J]. ACS Applied Materials & Interfaces, 2018, 10(9): 7593-7601. [25] Zhao Q X, Mu S D, Long Y R, et al.Tannin-Tethered Gelatin Hydrogels with Considerable Self-Healing and Adhesive Performances[J]. Macromolecular Materials and Engineering, 2019, 304(4): 1800664. [26] Wang Z X, Ji S Q, He F, et al.One-step transformation of highly hydrophobic membranes into superhydrophilic and underwater superoleophobic ones for high-efficiency separation of oil-in-water emulsions[J]. Journal of Materials Chemistry A, 2018, 6(8): 3391-3396. [27] Shao C Y, Meng L, Wang M, et al.Mimicking Dynamic Adhesiveness and Strain-Stiffening Behavior of Biological Tissues in Tough and Self-Healable Cellulose Nanocomposite Hydrogels[J]. ACS Applied Materials & Interfaces, 2019, 11(6): 5885-5895. [28] Kim H J, Kim D G, Yoon H, et al.Polyphenol/Fe-III Complex Coated Membranes Having Multifunctional Properties Prepared by a One-Step Fast Assembly[J]. Advanced Materials Interfaces, 2015, 2(14): 1500298. [29] Kim J H, Oh J Y, Lee J M, et al.Macroscopically interconnected hierarchically porous carbon monolith by metal-phenolic coordination as an sorbent for multi-scale molecules[J]. Carbon, 2018, 126: 190-196. [30] Rahim M A, Bjornmalm M, Suma T, et al.Metal-Phenolic Supramolecular Gelation[J]. Angewandte Chemie-International Edition, 2016, 55(44): 13803-13807. [31] Krogsgaard M, Andersen A, Birkedal H.Gels and threads: mussel-inspired one-pot route to advanced responsive materials[J]. Chemical Communication. 2014, 50(87): 13278-13281. [32] Fan H L, Wang L, Feng X D, et al.Supramolecular Hydrogel Formation Based on Tannic Acid[J]. Macromolecules, 2017, 50(2): 666-676. [33] Fan H L, Wang J H, Zhang Q Y, et al.Tannic Acid-Based Multifunctional Hydrogels with Facile Adjustable Adhesion and Cohesion Contributed by Polyphenol Supramolecular Chemistry[J]. ACS Omega, 2017, 2(10): 6668-6676. [34] Zheng L Y, Shi J M, Chi Y H.Tannic Acid Physically Cross-Linked Responsive Hydrogel[J]. Macromolecular Chemistry and Physics, 2018, 219(19): 1800234. [35] Zhou L, Fan L, Yi X, et al.Soft Conducting Polymer Hydrogels Cross-Linked and Doped by Tannic Acid for Spinal Cord Injury Repair[J]. ACS Nano, 2018, 12(11): 10957-10967. [36] Yang J, Li M, Wang Y F., et al.Double Cross-Linked Chitosan Composite Films Developed with Oxidized Tannic Acid and Ferric Ions Exhibit High Strength and Excellent Water Resistance[J] Biomacromolecules, 2019, 20(2): 801-812. [37] Andersen A, Krogsgaard M, Birkedal H.Mussel-Inspired Self-Healing Double-Cross-Linked Hydrogels by Controlled Combination of Metal Coordination and Covalent Cross-Linking[J]. Biomacromolecules, 2018, 19(5): 1402-1409. [38] Shao C Y, Wang M, Meng L, et al.Mussel-Inspired Cellulose Nanocomposite Tough Hydrogels with Synergistic Self-Healing, Adhesive, and Strain-Sensitive Properties[J] Chemistry of Materials, 2018, 30(9): 3110-3121. [39] Ninan N, Forget A, Shastri V P, et al.Antibacterial and Anti-Inflammatory pH-Responsive Tannic Acid Carboxylated Agarose Composite Hydrogels for Wound Healing[J]. ACS Applied Materials & Interfaces, 2016, 8(42): 28511-28521. [40] Zhang Y, He F, Li X L.Three-dimensional composite hydrogel based on polyamine zirconium oxide, alginate and tannic acid with high performance for Pb(II), Hg(II) and Cr(VI) trapping[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 65: 304-311. [41] 石楚桐,宋彬,辜海彬.儿茶酚-天然大分子-金属离子水凝胶的研究进展[J].皮革科学与工程,2019,29(6):30-37. [42] 张倩,穆畅道,李丽英,等.原花青素诱导明胶水凝胶的形成与稳定[J].皮革科学与工程,2008,18(3):20-25. [43] 邓依,王维生,刘文涛,等.天然植物单宁酸交联改性胶原膜[J].皮革科学与工程,2016,26(6):5-10. |