皮革科学与工程 ›› 2024, Vol. 34 ›› Issue (1): 32-40.doi: 10.19677/j.issn.1004-7964.2024.01.005

• 试验研究 • 上一篇    下一篇

基于改进YOLOv5的皮革抓取点识别及定位

金光, 任工昌*, 桓源, 洪杰   

  1. 陕西科技大学 机电工程学院,陕西 西安 710021
  • 收稿日期:2023-06-09 修回日期:2023-07-08 接受日期:2023-07-12 出版日期:2024-02-01 上线日期:2024-01-08
  • 通讯作者: *任工昌(1962-),男,二级教授,博士生导师,主要研究方向为产品创新理论,机器人创新设计。E-mail:rengc@sust.edu.cn。
  • 作者简介:金光(1996-),男,硕士研究生,主要研究方向为机器视觉,深度学习。E-mail:862922896@qq.com。
  • 基金资助:
    陕西省重点研发计划资助项目(2022GY-250); 西安市科技计划项目(23ZDCYJSGG0016-2022)

Grab Point Identification and Localization of Leather based on Improved YOLOv5

JIN Guang, REN Gongchang*, HUAN Yuan, HONG Jie   

  1. College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
  • Received:2023-06-09 Revised:2023-07-08 Accepted:2023-07-12 Published:2024-02-01 Online:2024-01-08

摘要: 为实现机器人对皮革抓取点的精确定位,文章通过改进YOLOv5算法,引入coordinate attention注意力机制到Backbone层中,用Focal-EIOU Loss对CIOU Loss进行替换来设置不同梯度,从而实现了对皮革抓取点快速精准的识别和定位。利用目标边界框回归公式获取皮革抓点的定位坐标,经过坐标系转换获得待抓取点的三维坐标,采用Intel RealSense D435i深度相机对皮革抓取点进行定位实验。实验结果表明:与Faster R-CNN算法和原始YOLOv5算法对比,识别实验中改进YOLOv5算法的准确率分别提升了6.9%和2.63%,召回率分别提升了8.39%和2.63%,mAP分别提升了8.13%和0.21%;定位实验中改进YOLOv5算法的误差平均值分别下降了0.033 m和0.007 m,误差比平均值分别下降了2.233%和0.476%。

关键词: 皮革, 抓取点定位, 机器视觉, YOLOv5, CA注意力机制

Abstract: In order to achieve precise localization of leather grasping points by robots, this study proposed an improved approach based on the YOLOv5 algorithm. The methodology involved the integration of the coordinate attention mechanism into the Backbone layer and the replacement of the CIOU Loss with the Focal-EIOU Loss to enable different gradients and enhance the rapid and accurate recognition and localization of leather grasping points. The positioning coordinates of the leather grasping points were obtained by using the target bounding box regression formula, followed by the coordinate system conversion to obtain the three-dimensional coordinates of the target grasping points. The experimental positioning of leather grasping points was conducted by using the Intel RealSense D435i depth camera. Experimental results demonstrate the significant improvements over the Faster R-CNN algorithm and the original YOLOv5 algorithm. The improved YOLOv5 algorithm exhibited an accuracy enhancement of 6.9% and 2.63%, a recall improvement of 8.39% and 2.63%, and an mAP improvement of 8.13% and 0.21% in recognition experiments, respectively. Similarly, in the positioning experiments, the improved YOLOv5 algorithm demonstrated a decrease in average error values of 0.033m and 0.007m, and a decrease in error ratio average values of 2.233% and 0.476%.

Key words: leather, grab point positioning, machine vision, YOLOv5, coordinate attention

中图分类号: