[1] Yu Y,Shen M,Song Q,et al.Biological activities and pharmaceutical applications of polysaccharide from natural resources:A review[J].Carbohydrate Polymers,2018,183:91-101. [2] Dwek R A.Glycobiology:toward understanding the function of sugars[J].Chemical reviews,1996,96(2):683-720. [3] Nasrollahzadeh M,Sajjadi M,Iravani S,et al.Starch,cellulose,pectin,gum,alginate,chitin and chitosan derived(nano)materials for sustainable water treatment:A review[J].Carbohydrate Polymers,2021,251:116986. [4] Giepmans,B N G.The fluorescent toolbox for assessing protein location and function[J].Science,2006,312(5771):217-224. [5] Waggoner A.Fluorescent labels for proteomics and genomics[J].Current Opinion in Chemical Biology,2006,10(1):62-66. [6] Lavis L D,Raines R T.Bright ideas for chemical biology[J].ACS Chemical Biology,2008,3(3):142-155. [7] Kristiansen K A.Potthast B E.Periodate oxidation of polysaccharides for modification of chemical and physical propertiest[J].Carbohydrate Research,2010, 345(10):1264-1271. [8] De H P,Gamez P,Driessen W L,et al.New polydentate and polynucleating N-donor ligands from amines and 2,4,6-trichloro-1,3,5-triazine[J].Tetrahedron Letter,2002,43(38):6783-6783. [9] Abitbol T,Palermo A,Moran-Mirabal J M.Fluorescent labeling and characterization of cellulose nanocrystals with varying charge contents[J].Biomacromolecules,2013,14(9):3278-3284. [10] Helbert W,Chanzy H,Husum T L,et al.Fluorescent cellulose microfibrils as substrate for the detection of cellulase activity[J].Macromolecules,2003,4(3):481-487. [11] Reid M S,Karlsson M,Abitbol T.Fluorescently labeled cellulose nanofibrils for detection and loss analysis[J].Carbohydrate Polymers,2020,250:116943. [12] Norton A B,Hancocks R D,Spyropoulos F,et al.Development of 5-(4,6-dichlorotriazinyl)aminofluorescein(DTAF)staining for the characterisation of low acyl gellan microstructures[J].Food Hydrocolloids,2016,53(1-2):93-97. [13] Khin M N,Ahammed S,Zhong F.Development of(5-(4, 6- dichlorotriazinyl)aminofluorescein) DTAF-labelled polysaccharides for characterization of microstructure and phase distribution of composite hydrogel Visualization of hydrogels using CLSM[J].Food Bioscience,2021,41:100909. [14] Hoffmann C,Leroy-Dudal J,Patel S,et al.Fluorescein isothiocyanate-labeled human plasma fibronectin in extracellular matrix remodeling[J].Analytical Biochemistry,2008,372(1):62-71. [15] Eyley S,Thielemans W.Surface modification of cellulose nanocrystals[J].Nanoscale,2014,6(14):7764-7779. [16] Dong S,Roman M.Fluorescently labeled cellulose nanocrystals for bioimaging applications[J].Journal of the American Chemical Society,2007,129(45):13810-13811. [17] Roman M,Dong S,Hirani A,et al.Cellulose nanocrystals for drug delivery[M].Polysaccharide Materials:Performance by Design,2009,1071:81-91. [18] Fan X M,Yu H Y,Wang D C,et al.Designing highly luminescent cellulose nanocrystals with modulated morphology for multifunctional bioimaging materials[J].ACS Applied Materials&Interfaces,2019,11(51):48192-48201. [19] Mahmoud K A,Mena J A,Male K B,et al.Effect of surface charge on the cellular uptake and cytotoxicity of fluorescent labeled cellulose nanocrystals[J].ACS Applied Materials&Interfaces,2010,2(10):2924-2932. [20] Purington E,Bousfield D,Gramlich W M.Fluorescent dye adsorption in aqueous suspension to produce tagged cellulose nanofibers for visualization on paper[J].Cellulose,2019,26(8):5117-5131. [21] Cai C,Wei B,Jin Z,et al.Facile method for fluorescent labeling of starch nanocrystal[J].ACS Sustainable Chemistry&Engineering,2017,5(5):3751-3761. [22] Ghosh S K,Abdullah F,Mukherjee A.Fabrication and fluorescent labeling of guar gum nanoparticles in a surfactant free aqueous environment[J].Materials Science&Engineering C,2015,46(46):521-529. [23] Hu Q,Chen Q,Yan X,et al.Chondrocyte affinity peptide modified PAMAM conjugate as a nanoplatform for targeting and retention in cartilage[J].Nanomedicine,2018,13(7):749-767. [24] Mahmoud K A,Mena J A,Male K B,et al.Effect of surface charge on the cellular uptake and cytotoxicity of fluorescent labeled cellulose nanocrystals[J].ACS Applied Materials&Interfaces,2010,2(10):2924-2932. [25] Ding Q,Zeng J,Wang B,et al.Influence of binding mechanism on labeling efficiency and luminous properties of fluorescent cellulose nanocrystals[J].Carbohydrate Polymers,2017,175:105-112. [26] Ding Q,Zeng J,Wang B,et al.Effect of retention rate of fluorescent cellulose nanofibrils on paper properties and structure[J].Carbohydrate Polymers,2018,186:73-81. [27] Hobisch M A,Bossu J,Mandlez D,et al.Localization of cellulosic fines in paper via fluorescent labeling[J].Cellulose,2019,26(11):6933-6942. [28] Hobisch M,Zabler S,Bardet S M,et al.How cellulose nanofibrils and cellulose microparticles impact paper strength-a visualization approach[J].Carbohydrate Polymers,2020,254:117406. [29] Nielsen L J,Eyley S,Thielemans W,et al.Dual fluorescent labelling of cellulose nanocrystals for pH sensing[J].Chemical Communications,2010,46(47):8929-8931. [30] Ursuegui S,Chivot N,Moutin S,et al.Biotin-conjugated N-methylisatoic anhydride:a chemical tool for nucleic acid separation by selective 2prime-hydroxyl acylation of RNA[J].Chemical Communications Royal Society of Chemistry,2014,50:5748. [31] Coppola G M.A convenient preparation of 1,4-dihydro-1-methyl-4-oxo-2-quinolinecarboxaldehyde from N- methylisatoic anhydride[J].Journal of Heterocyclic Chemistry,1986,23(6):1717-1719. [32] Steen K A,Rice G M,Weeks K M.Fingerprinting noncanonical and tertiary RNA structures by differential shape reactivity[J].Journal of the American Chemical Society,2012,134(32):13160. [33] Deangelis P L.Polysaccharide labeling with N-methylisatoic anhydride:Generation of ultraviolet chromophores and blue fluorophores[J].Analytical Biochemistry,2000,284(1):167-169. [34] 涂宗财,李如一,石燕,等.一种N-甲基靛红酸酐快速标记多糖的制备方法[P].CN201410748956.X,2015-04-22. [35] 齐猛. N-甲基靛红酸酐标记杠柳新苷P分离粘虫中肠结合蛋白的研究[D].西安:西北农林科技大学,2015. [36] Kibler M,Bachmann K.New derivatization method for carboxylic acids in aqueous solution for analysis by capillary electrophoresis and laser-induced fluorescence detection[J].Journal of Chromatography A,1999,836(2):325-331. [37] Zeng Y,Song Y,Li J,et al.Visualization and quantification of penetration/mass transfer of acrylic resin retanning agent in leather using fluorescent tracing technique[J].Journal of the American Leather Chemists Association,2016,111(11):398-405. [38] Nakajima N,Ikada Y.Mechanism of amide formation by carbodiimide for bioconjugation in aqueous media[J].Bioconjugate chemistry,1995,6(1):123-130. [39] Hu T Q,Hayek A.A green technology for fibre modification,part I:Attaching a fluorescent molecule to cellulose fibres and their potential highvalue applications[J].Journal of Science&Technology for Forest Products and Processes,2013,3(3):34-40. [40] Wang C,Gao M,Huang Z,et al.Characterization of saccharide using high fluorescent 5-(((2-(carbohydrazino)methyl)thio)acetyl)-aminofluorescein tag by Capillary-HPLC-LIF and MALDI-TOF-MS[J].Talanta,2013,117:229-234. [41] Han Z,Wang Y,Liu X,et al.Fluorescent labeling of several gycosaminoglycans and their interaction with anti-chondroitin sulfate antibody[J].Chinese Journal of Analytical Chemistry,2011,39(9):1352-1357. [42] 焦广玲. 几种大西洋来源海藻多糖及其衍生物抗2型糖尿病活性的比较研究[D].青岛:中国海洋大学,2011. [43] 赵小亮. 利用糖芯片研究海洋多糖及其衍生物与蛋白质的相互作用[D].青岛:中国海洋大学,2013. [44] Ruhaak L R,Zauner G,Huhn C,et al.Glycan labeling strategies and their use in identification and quantification[J].Analytical and Bioanalytical Chemistry,2010,397(8):3457-3481. [45] O’Shea M G,Samuel M S,Konik C M,et al.Fluorophore-assisted carbohydrate electrophoresis(FACE)of oligosaccharides:efficiency of labelling and high- resolution separation[J].Carbohydrate Research,1998,105(1-2):1-12. [46] Zoltan S,András G,Tomas R,et al.Improved sample preparation method for glycan analysis of glycoproteins by CE-LIF and CE-MS[J].Electrophoresis,2010,31(8):1389-1395. [47] Bui A,Kocsis B,Kilár F.Methodology to label mixed carbohydrate components by APTS[J].Journal of biochemical and biophysical methods,2008,70(6):1313-1316. [48] Bunz S C,Cutillo F.Analysis of native and APTS-labeled N-glycans by capillary electrophoresis/time-of-flight mass spectrometry[J].Analytical and Bioanalytical Chemistry,2013,405(25):8277-8284. [49] Evangelista R A,Guttman A,Chen F.Acid-catalyzed reductive amination of aldoses with 8-aminopyrene- 1,3,6-trisulfonate[J].Electrophoresis,1996,17(2):347-351. [50] Mitra I,Snyder C M,Zhou X,et al.Structural characterization of serum N-glycans by methylamidation,fluorescent labeling,and analysis by microchip electrophoresis[J].Analytical Chemistry,2016:88(18):8965-8971. [51] Che F Y,Song J F,Rong Z,et al.Analysis of 8-aminonaphthalene-1,3,6-trisulfonate-derivatized oligosaccharides by capillary electrophoresis-electrospray ionization quadrupole ion trap mass spectrometry[J].Journal of Chromatography A,1999,858(2):229-238. [52] Jackson P.The use of polyacrylamide-gel electrophoresis for the high-resolution separation of reducing saccharides labelled with the fluorophore 8-aminonaphthalene-1,3,6-trisulphonic acid.Detection of picomolar quantities by an imaging system based on a cooled char[J].Biochemical Journal,1990,270(3):705-13. [53] Roger O,Colliec-Jouault S,Ratiskol J,et al.Polysaccharide labelling:impact on structural and biological properties[J].Carbohydrate Polymers,2002,50(3):273-278. [54] Gennaro L A,Delaney J,Vouros P,et al.Capillary electrophoresis/electrospray ion trap mass spectrometry for the analysis of negatively charged derivatized and underivatized glycans[J].Rapid Communications in Mass Spectrom,2002,16(3):192-200. [55] Gennaro L A,Harvey D J,Vouros P.Reversed-phase ion-pairing liquid chromatography/ion trap mass spectrometry for the analysis of negatively charged,derivatized glycans[J].Rapid Communications in Mass Spectrometry,2003,17(14):1528-1534. [56] Oonuki Y,Yoshida Y,Uchiyama Y,et al.Application of fluorophore-assisted carbohydrate electrophoresis to analysis of disaccharides and oligosaccharides derived from glycosaminoglycans[J].Analytical Biochemistry,2005,343(2):212-222. [57] Hardman R.A toxicologic review of quantum dots:toxicity depends on physicochemical and environmental factors[J].Environmental Health Perspectives,2006,114(2):165-172. [58] Choi H S,Liu W,Misra,et al.Renal clearance of quantum dots[J].Nature Biotechnology,2007,25:1165-1170. [59] Thomas S W I,Joly G D,Swager T M.Chemical sensors based on amplifying fluorescent conjugated polymers[J].Chemical Reviews,2007,107:1339-1386. [60] Fernando L P,Kandel P K,Yu J,et al.Mechanism of cellular uptake of highly fluorescent conjugated polymer nanoparticles[J].Biomacromolecules,2010,11(10):2675-2682. [61] Dan D,Jing L,Shi H,et al.Light-up bioprobe with aggregation-induced emission characteristics for real-time apoptosis imaging in target cancer cells[J].Journal of Materials Chemistry B,2013,2(2):231-238. [62] Cui K,Lu X,Cui W,et al.Fluorescent nanoparticles assembled from a poly(ionic liquid)for selective sensing of copper ions[J].Chemical Communications,2011,47(3):920-922. [63] Osakada Y,Hanson L,Cui B.Diarylethene doped biocompatible polymer dots for fluorescence switching[J].Chemical Communications,2012,48(27):3285-3287. [64] Wu C,Schneider T,Zeigler M,et al.Bioconjugation of ultrabright semiconducting polymer dots for specific cellular targeting[J].Journal of the American Chemical Society,2010,132(43):15410-15417. [65] Zhang X,Wang S,Xu L,et al.Biocompatible polydopamine fluorescent organic nanoparticles:facile preparation and cell imaging[J].Nanoscale,2012,4(18):5581-5584. [66] Liu M,Ji J,Zhang X,et al.Self-polymerization of dopamine and polyethyleneimine:novel fluorescent organic nanoprobes for biological imaging applications[J].Journal of Materials Chemistry B Materials for Biology&Medicine,2015,3(17):3476-3482. [67] Shi Y,Xu D,Liu M,et al.Room temperature preparation of fluorescent starch nanoparticles from starch-dopamine conjugates and their biological applications[J].Materials Science&Engineering C,2018,82:204-209. [68] Zhu Y,Wang J,Li X,et al.Self-assembly and emulsification of dopamine-modified hyaluronan[J].Carbohydrate Polymers,2015,123:72-79. [69] Ryu J H,Hong S,Lee H.Bio-inspired adhesive catechol-conjugated chitosan for biomedical applications:A mini review[J].Acta Biomaterialia,2015,27:101-115. [70] Cassano R,Trapani A,Gioia M L D,et al.Synthesis and characterization of novel chitosan-dopamine or chitosan-tyrosine conjugates for potential nose-to-brain delivery[J].International Journal of Pharmaceutics,2020,589:119829. [71] Wei W,Yuan L,Hu G,et al.Monodisperse chitosan microspheres with interesting structures for protein drug delivery[J].Advanced Materials,2008,20(12):2292-2296. [72] Wei W,Wang L,Yuan L,et al.Preparation and application of novel microspheres possessing autofluorescent properties[J].Advanced Functional Materials,2007,17(16):3153-3158. [73] Hwang Y J,Larsen J,Krasieva T B,et al.Effect of genipin crosslinking on the optical spectral properties and structures of collagen hydrogels[J].ACS Applied Materials&Interfaces,2011,3(7):2579-2584. [74] Yao F,Li X,Yu X,et al.Crosslinking reaction of chitosan and gelatin with genipin[J].Journal of Tianjin University,2007,40(12):1485-1489. [75] Nickerson M T,Patel J,Heyd D V,et al.Kinetic and mechanistic considerations in the gelation of genipin-crosslinked gelatin[J].International Journal of Biological Macromolecules,2006,39(4-5):298-302. [76] Yuan L,Li X,Ge L,et al.Emulsion template method for the fabrication of gelatin-based scaffold with a controllable pore structure[J].ACS Applied Materials&Interfaces,2018,11(1):269-277. [77] Song Y,Wu S,Wang Y N,et al.Visualization of penetration and reaction of aldehyde tanning agent in leather using fluorescence technique[J].Journal of the American Leather Chemists Association,2020,115(7):248-254. [78] Zhang R,Zhang X X,Tang Y X,et al.Composition,isolation,purification and biological activities of Sargassum fusiforme polysaccharides:A review[J].Carbohydrate Polymers,2019, 228:115381. [79] Sun M M,Su F C,Yang J X,et al.Fluorescent labeling of polysaccharides from masson pine pollen and its effect on raw264.7 macrophages[J].Polymers,2018,10(4):372. [80] Wang K,Cheng F,Pan X,et al.Investigation of the transport and absorption of Angelica sinensis polysaccharide through gastrointestinal tract both in vitro and in vivo[J].Drug Delivery,2017,24(1):1360-1371. [81] 丁雷. 天然多糖基高分子染料的构建与应用研究[D].上海:东华大学,2021. [82] Ding L,Li X,Hu L,et al.A naked-eye detection polyvinyl alcohol/cellulose-based pH sensor for intelligent packaging[J].Carbohydrate Polymers,2020,233:115859. [83] Chauhan P,Hadad C,López A H,et al.A nanocellulose-dye conjugate for multi-format optical pH-sensing[J].Chemical Communications,2014,50(67):9493-9496. [84] Ferreira L V,Cabral P V,Almeida P,et al.Ultraviolet visible absorption,luminescence,and X-ray photoelectron spectroscopic studies of a rhodamine dye covalently bound to microcrystalline cellulose[J].Macromolecules,1998,31(12):3936-3944. [85] Zen,K.Second messengers regulate endosomal acidification in Swiss 3T3 fibroblasts[J].The Journal of Cell Biology,1992,119(1):99-110. [86] 刘俊,夏传杰,王康龙,等.基于海藻酸钠电沉积技术制备ZnO量子点及其复合膜的检测应用研究[J].高分子学报,2022,53(2):145-152. [87] Chen W,Lei J,Wang Y,et al.Direct generation of Mn-doped ZnS quantum dots/alginate nanocomposite beads based on gelation and in situ synthesis of quantum dots[J].Macromolecular Materials and Engineering,2019,304(4):1800681. [88] Park S,Lee M R,Shin I.Carbohydrate microarrays as powerful tools in studies of carbohydrate-mediated biological processes[J].Chemical Communications,2008,(37):4389-4399. [89] 薛彦峰,王秀奎,侯信,等.糖芯片研究[J].化学进展,2008,20(1):148-154. [90] 黄河,贾红英,侯信.糖芯片的检测及应用[J].化学通报,2009,72(5):401-406. [91] Baum A,Dominiak M,Vidal-Melgosa S,et al.Prediction of pectin yield and quality by FTIR and carbohydrate microarray analysis[J].Food and Bioprocess Technology,2017,10(1):143-154. [92] 沈一鸣,马建中,范倩倩.天然多糖与纳米材料在皮革无铬鞣制中的研究进展[J].精细化工,2022,39(5):865-872. [93] Ding W,Zhou J,Zeng Y,et al.Preparation of oxidized sodium alginate with different molecular weights and its application for crosslinking collagen fiber[J].Carbohydrate Polymers,2017,157:1650-1656. [94] Ding W,Yi Y,Wang Y N,et al.Preparation of a highly effective organic tanning agent with wide molecular weight distribution from bio-renewable sodium alginate[J].Chemistryselect,2018,3(43):12330-12335. [95] Ding W,Wang Y N,Zhou J F,et al.Effect of structure features of polysaccharides on properties of dialdehyde polysaccharide tanning agent[J].Carbohydrate Polymers,2018,201:549-556. [96] Ding W,Pang X Y,Ding Z W,et al.Constructing a robust chrome-free leather tanned by biomass-derived polyaldehyde via crosslinking with chitosan derivatives[J].Journal of Hazardous Materials,2020,396:122771. [97] 黄婉丽,杨紫涵,王亚楠,等.双醛壳聚糖的制备及其对皮胶原纤维的交联作用[J].皮革科学与工程,2021,31(2):1-5. [98] Ding W,Yi Y D,Wang Y N,et al.Peroxide-periodate co-modification of carboxymethylcellulose to prepare polysaccharide-based tanning agent with high solid content[J].Carbohydrate Polymers,2019,224:115169. |